After having the privilege to serve over 4 years as the Chair of the National Blood Foundation (NBF), I have never been more excited and confident in our ability to meaningfully impact the future of the transfusion medicine and cellular therapies industry. When I reflect, not only on this past year, but on the NBF’s achievements over the decades, it’s remarkable what strong dedication can accomplish when directed by the allegiance and leadership of an industry passionate about the safety and care of patients worldwide. These milestones achieved are only possible due to your generosity.

The highlights this year demonstrate that this passion remains at the root of the foundation’s funding commitments. It is invigorating to set new goals and approaches for continued advancement in the years to come. Thank you for your continued commitment to the NBF and your investment in the future of transfusion medicine and cellular therapies.

LEGACY

The NBF continues to be a respected source of funding for scientists striving to launch their research careers. As a resource, the NBF is experiencing an increase in the number of applications received for funding through its early-career Scientific Research Grants Program. In 2015 we saw a significant increase in the number of international applicants.

RESEARCH

The NBF’s early-career Scientific Research Grants Program has thrived for over three decades, awarding almost 200 investigators over $8 million. Many of the scientists funded throughout the years are considered expert leaders in transfusion medicine and cellular therapies today. Their research and leadership contributions have had significant impact on the field.

Additionally, with your support, the NBF introduced a new grant program, the Strategic Research and Education Grants Program, using modest funding to utilize industry expert knowledge to advance AABB’s mission and strategic priorities. Also aligned with NBF’s mission, this new program supports industry innovation that improves patient safety.
INNOVATION
The research and education initiatives that the NBF funds are selected based on driving significant industry impact and patient outcomes whether funded through the early-career Scientific Research Grants Program or the new Strategic Research and Education Grants Program.

RECOGNITION
Realizing the importance of recognizing the investigators who leveraged their NBF early-career grant funding into prominent careers in transfusion medicine and cellular therapies, we reinstated the NBF Hall of Fame. This program was reestablished, inducting three new members this year.

The ability to celebrate NBF’s impact on improving patient safety and care is only feasible because of the financial and intellectual commitment of our major donors. Identifying creative ways to recognize their generosity remains a priority in the coming year.

DIRECTION
The NBF embarked on a new strategic planning process this year with the goal to revisit our mission to ensure long term sustainable growth and engagement as well as to identify new opportunities and enhance current programs and services. We reached out to key opinion leaders to gather their thoughts and ideas for what emerging trends currently challenge the transfusion medicine and cellular therapies fields and how the NBF might offer support.

More than a decade of research, funding and development have been invested in the future of the transfusion medicine and cellular therapies industry. The NBF is steadfast in our purpose as a research and education funding source, a hub for innovation and industry advancement, as well as a community for blood banking and industry leaders to network and contemplate existing challenges and obstacles.

Thank you again for your continued support and contributions. Looking forward, I encourage your continued involvement in the future as we take our initial steps towards delivering the next decade of service.

Sincerely,

David Perez
Chair, National Blood Foundation
President and Chief Executive Officer, Terumo BCT
Chair, Global Blood Management Business, Terumo Corporation

NBF MISSION
The mission of the NBF is to advance transfusion medicine and cellular therapies by funding scientific research that benefits patients and donors.

ABOUT THE NBF
Celebrating Over 30 Years of Awarding Grants that Support Innovative Research

The National Blood Foundation (NBF), established in 1983, is a program of AABB that distributes funding to support research and education in all aspects of blood banking, transfusion medicine, cellular therapies, and patient blood management. As a charitable foundation, the NBF raises money from AABB members — both institutional and individual — as well as corporations, foundations and others for the National Blood Foundation Research and Education Trust (NBFRET), a 509(a)(3) organization. Since its inception, the NBF has awarded over $8 million to early-career investigators through its Scientific Research Grants Program.
NBF BOARD OF TRUSTEES

October 1, 2014 – September 30, 2015

DAVID PEREZ (Chair)
CORD Member
President and CEO
Terumo BCT
Chairman of the Board, Terumo
Global Blood Management
Business14143 Denver West

JAMES P. COVERT (Vice Chair)
CORD Member
President and CEO
The Institute for Transfusion Medicine-ITxM

JAMES C. ZIMRING, MD, PhD
Chair, Grants Review Committee
Director, Transfusion Medicine Research Program
Bloodworks Northwest

BRYAN KRUEGER
At-Large Member
Chair, Annual Meeting Events Committee
Partners Program
President and CEO
Bonfils Blood Center

BRIAN MCDONOUGH
Public Member
Chair, Development Committee
Principal, Dx Consulting
Quotient, Board of Directors

JOHN ARMITAGE, MD
At-Large Member
Partners Program
President and CEO
Oklahoma Blood Institute

J. DANIEL CONNOR, MBA
CORD Member
President and CEO
Blood Systems, Inc.

DEAN GREGORY, MBA
CORD Member
President, Medical Devices
Fenwal, Inc., A Fresenius Kabi Company

WILLIAM “OBI” GREENMAN
CORD Member
President and CEO
Cerus Corporation

CHRIS HRHOUDA, MT(ASCP)
CORD Member
Executive Vice President, Biomedical Services
American Red Cross

BEN MARCHLEWICZ, PhD, MBA
CORD Member
Director
Blood Screening Technical Operations, US
Abbott Diagnostics Division
Abbott Laboratories

MIRIAM A. MARKOWITZ
Ex-Officio
Chief Executive Officer
AABB

MARY O’NEILL, MD
AABB Board of Directors Representative
Vice President
American Red Cross Blood Services

DONNA REGAN, MT(ASCP)SBB
AABB Board of Directors, President-Elect
Director, St. Louis Cord Blood Bank and Cellular Therapy Laboratory with SSM Cardinal Glennon Children’s Medical Center

ROY ROPER, MS
At-Large Member
Partners Program
President and CEO
Blood Bank of Delmarva, Inc.

MERLYN H. SAYERS, MBBCh, PhD
At-Large Member
President and CEO
Carter BloodCare

CARSTEN SCHROEDER
CORD Member
President
Grifols

BYRON SELMAN
CORD Member
Chief Medical Officer
New York Blood Center

BETH H. SHAZ, MD
CORD Member
Chief Executive Officer
Canadian Blood Services

EDWARD L. SNYDER, MD
At-Large Member
Professor, Lab Medicine
Yale University

LYNNE UHL, MD
AABB Board of Directors, President
Division Director
Laboratory and Transfusion Medicine
Beth Israel Deaconess Medical Center

CLAUDIA ZYLBERBERG, PhD
Public Member
Chief Executive Officer
Akron Biotechnology, LLC
2015 – A LOOK BACK

Early Careers

Early-Career Scientific Research Grants Program

Grant applications are accepted from July 1 – December 31 each year. The NBF received a record number of applications in 2015 in research areas of transfusion medicine, cellular therapies, patient blood management and infectious disease. There was a 29% increase in the international applications received compared to 2014.

Five deserving early-career grant applicants were awarded grants of $75,000 each. The Grants Review Committee comprised of twenty-seven leading scientists who were specifically chosen based on their ability to evaluate the research content areas addressed in the applications. The NBF Committee employs a rigorous approach in the adjudication process. Committee members use the National Institutes of Health (NIH) scoring system, 1 – 9 (1 being the best possible grant application and 9 being the worst), to rank the applications based on: significance, investigator, innovation, approach, and environment. The NBF is grateful for Dr. James Zimring, MD, PhD’s service as Chair of the committee.
Application Research Content Area Distribution

Applications Received 2009 – 2015

- Transfusion Medicine (TM):
 - 3% in 2009
 - 5% in 2010
 - 21% in 2011
 - 36% in 2012
 - 56% in 2013
 - 24% in 2014
 - 7% in 2015

- Cellular Therapies (CT):
 - 8% in 2009
 - 3% in 2010
 - 8% in 2011
 - 3% in 2012
 - 8% in 2013
 - 10% in 2014
 - 10% in 2015

- Infectious Diseases (ID):
 - 3% in 2009
 - 3% in 2010
 - 3% in 2011
 - 3% in 2012
 - 3% in 2013
 - 3% in 2014
 - 3% in 2015

- Patient Blood Management (PBM):
 - 21% in 2009
 - 33% in 2010
 - 33% in 2011
 - 33% in 2012
 - 33% in 2013
 - 33% in 2014
 - 33% in 2015

Bar graph showing the number of applications received from 2009 to 2015:

- 2009: 33
- 2010: 39
- 2011: 42
- 2012: 40
- 2013: 34
- 2014: 47
- 2015: 64
NBF Early Career Grant Applicants: US and Non-US

Application Geographic Distribution

* Abbreviations are US states
2015 GRANT RECIPIENTS
James A. Ankrum, PhD
Diabetes Research Center, University of Iowa
Iowa City, IA

Elucidating the Role of FOXO3 in Restoring the Potency of In Vitro Expanded Mesenchymal Stem Cells.

Mesenchymal stem cells’ (MSC) ability to remodel inflammatory processes have motivated their use in hundreds of clinical trials. MSC’s therapeutic efficacy relies on large numbers of highly potent cells. However, MSC’s potency has been shown to be highly variable and deteriorates with time in culture. In this study we seek to elucidate the timing of MSC’s loss of potency during in vitro expansion and identify contributing mechanisms of MSC dysfunction. We have previously shown small molecules can be used to restore MSC immunomodulatory potency, but the effect is dependent on FOXO3 activation. The specific mechanism of FOXO3 augmented MSC function and downstream molecular targets will be identified in this study. Our central hypothesis is that expression of FOXO3 in MSC results in activation of both anti-inflammatory and proautophagy gene programs that collectively restore MSC phenotype. The rationale for pursuing the proposed research is to elucidate mechanisms that control MSC potency that will then form the basis of future studies that seek to engineer an enhanced MSC-based therapy. In future studies, these downstream targets can be manipulated to restore function to MSCs from all donors, including diseased patients, and thus remove a major barrier to broad adoption of MSC therapy.

Yacine Boulaftali, PhD
Inserm U1148- Laboratory for Vascular Translational Science (LVTS)
Paris, France

Neutralizing SerpinE2: A New Medical Concept of Treating Hemophilia.

Our goal is to provide proof-of-principle that neutralizing a natural anticoagulant protein, named protease nexin-1 (PN-1) or serpinE2, can be a new medical concept in treating patients with hemophilia. Such a concept has never been proposed up to now. However, PN-1 deserves special attention since it is a very effective inhibitor of thrombin and factor Xla. Moreover, PN-1 is highly expressed by platelets where it regulates both the activity and the generation of thrombin. Current treatment of hemophilia includes replacement therapy with recombinant or purified Factor VIII (FVIII), but displays several drawbacks justifying the development of alternative therapeutic approaches that do not rely on FVIII replacement. Therefore, we propose to study the impact of PN-1 neutralizing or deletion in the hemostasis of the hemophilia A mouse model. Our strategy consists of assessing this by using a variety of in vitro and in vivo models of thrombosis, the hemostasis of the double knockout mice for PN-1 and FVIII, and of the hemophilia. A mouse infused with a neutralizing anti-PN-1 polyclonal antibody. We assume that our proposed research will provide new insights into the control of thrombin activity and generation that could give rise to new approaches for therapeutics in hemophilia.
LINDSEY A. GEORGE, MD
The Children's Hospital of Philadelphia
Philadelphia, PA

Prothrombin Activation In Vivo: Contribution of Membrane Binding for Effective Hemostasis and Development of a Novel Warfarin Reversal Strategy.

Warfarin anticoagulation is achieved by inhibiting γ-carboxylation of procoagulant factors VII, IX, X and prothrombin. Despite increasing targeted oral anticoagulant use, warfarin remains the mainstay of thromboembolism intervention complicated by an annual fatal bleeding rate approaching 1%. No warfarin reversal strategy reliably improves outcome following intracranial hemorrhage, which comprises the bulk of warfarin morbidity and mortality. Use of factor Xa (FXa) to assemble the prothrombinase complex (FXa, Factor Va, calcium and anionic membranes) and bypass warfarin effected factors to the level of prothrombin may be used for acute onset, short duration warfarin reversal. Our previously described “zymogen-like” FXa molecules, i.e. FXaI16L, may be attractive for this purpose because they do not require upstream clotting factor activation and have longer half-lives than wild-type FXa. Specifically, FXaI16L may be useful in warfarin associated ICH, or perioperative management and eliminate need for bridging therapy. Initial studies support FXaI16L efficacy in warfarin reversal and suggests un/under-carboxylated prothrombin, imparted by warfarin anticoagulation, can generate thrombin. Preliminary findings challenge longstanding dogma that loss of γ-carboxylation will disrupt protein-membrane binding resulting in a biologically inert protein. This work will investigate FXaI16L warfarin reversal efficacy and, through study of prothrombin membrane binding contribution to effective hemostasis, mechanism of action.

SARIKA SARASWATI, PhD
The Department of Veterans Affairs Medical Center, Vanderbilt University
Nashville, TN

New Strategies to Augment Efficacy of Stem Cell Therapy for Therapeutic Revascularization.

Critical limb ischemia (CLI) due to severe peripheral artery disease (PAD) is a debilitating condition characterized by severe pain, gangrene, limb loss and high mortality. The primary solution to this life-threatening condition is to surgically bypass the vascular occlusion to increase blood circulation within the affected limb. Since the majority of patients are poor surgical candidates, cell-based therapies are an innovative method to enhance collateral blood flow. Results from multiple clinical trials that utilize autologous stem cells in advanced PAD, including CLI, demonstrate that bone marrow-derived cell therapies, including with Mesenchymal Stem Cells (MSCs), do not result in sustained benefits. Our objective is to revitalize stem cell therapy for CLI by developing optimized MSCs and simultaneously augment their engraftment. Our goal in this proposal is to enhance human stem cell engraftment in ischemic tissue in an in vivo hindlimb ischemia model via a combination of injectable hydrogel and human preprimed MSCs (predifferentiation towards endothelial lineage). The proposed experiments will overcome the critical hurdles of poor stem cell potency and lack of engraftment at the wound site, which significantly curtails their therapeutic impact. The conceptual advances from these studies can be easily translated into clinical therapies for patients affected with CLI.
Aeroallergen-Specific Antibodies in Allergic Transfusion Reactions.

Allergic transfusion reactions (ATRs) are noxious, immediate hypersensitivity reactions that cause patient suffering, increase costs, and contribute to blood wastage. Our study of ATRs to platelets indicates that aeroallergy (hay fever) is a unique atopic risk factor for ATRs to platelets. Given the precedence for cross-reactivity of protein allergens across species, including an example of aeroallergen cross-reacting with the platelet protein, profilin, we investigated whether patients with aeroallergy and ATRs have antibodies to platelet proteins. Our overall hypothesis is that select aeroallergen-specific antibodies cross-react with human platelet proteins to cause ATRs. Specific Aims: 1) Broadly characterize the allergenic component of platelet lysate using basophil histamine release. Our central hypothesis invokes a protein-induced allergic response, but the fraction of platelet components (protein, lipid, small molecule) that induces allergic responses has not been systematically characterized; 2) Identify anti-platelet antibody specificity through protein microarray profiling of plasma samples from subjects with recurrent ATRs. Patients (n=5) whom we identified with anti-platelet IgG will have their plasma screened for anti-human protein IgG in a human protein microarray, along with controls (n=5) who never had an ATR; 3) Validate antibody-antigen interactions for the top platelet protein candidate(s) identified in the microarray.

SCHOLARS – 2015 Awardees

Annually, the NBF recognizes the early-career grant recipients who have completed their NBF-funded research and provided a final report on their projects. In 2015, NBF recognized seven grant recipients awarding them NBF Scholar status.

- STELLA CHOU, MD, Assistant Professor of Pediatrics Perelman School of Medicine at the University of Pennsylvania
- STEPHANIE EISENBARTH, MD, PhD, Assistant Professor Laboratory Medicine and Internal Medicine Yale University School of Medicine
- WILLIAM JANSSEN, MD, Assistant Professor of Medicine National Jewish Health
- NILAM MANGALMURTI, MD, Adjunct Investigator, Institute for Environmental Medicine University of Pennsylvania School of Medicine
- ANAND PADMANABHAN, MD, PhD, Associate Medical Director BloodCenter of Wisconsin
- HENRIQUE VEIGA-FERNANDES, DVM, PhD, Head of Immunobiology Unit Instituto de Medicina Molecular
- JIANHUA YU, PhD, Assistant Professor, Division of Hematology, College of Medicine The Ohio State University
ANNUAL GRANT RECIPIENTS LECTURE AND LUNCHEON HIGHLIGHTED THE RESEARCH OF THREE OUTSTANDING NBF GRANT RECIPIENTS.

This year’s annual NBF Grant Recipients’ Lecture and Luncheon occurred during AABB’s Annual Meeting in Anaheim, CA. NBF’s current and past grant recipients, along with other industry professionals, convened at this annual luncheon to reconnect and network. An audience of about 150 people heard from three NBF grant recipients as they discussed their leading edge NBF-funded research.

2015 Speakers:

Jack Latham Memorial Award for Innovative Research Recipient
JIANHUA YU, PhD
The Ohio State University Biomedical Research Tower Luncheon Presentation Title: “Mobilizing and Driving Immune Cells for Cancer Treatment”

LINDSEY A. GEORGE, MD
Fellow, Pediatric Hematology/Oncology The Children’s Hospital of Philadelphia Perelman School of Medicine University of Pennsylvania Luncheon Presentation Title: “Development of a Novel Warfarin Reversal Agent: Pre-Clinical Evaluation and Mechanism of Action”

BRIAN S. CUSTER, PhD, MPH
Associate Investigator, Epidemiology and Health Outcomes Research Blood Systems Research Institute Luncheon Presentation Title: “Evidence-Based Donor Policy Focused on Transfusion-Transmissible Infections”

NBF’S HALL OF FAME

NBF Hall of Fame

Each year the NBF recognizes excellence among our early-career grant recipients by inducting them into the NBF Hall of Fame. Inductees into the NBF Hall of Fame must meet the following criteria and are selected by their colleagues in the field;

Eligibility Criteria

- An NBF Scholar
- Service on three or more AABB committees or workgroups
- Demonstrates a successful career and exemplary leadership through commitment, forward thinking, and various contributions to the field
- Current AABB Member
HALL OF FAME – 2015 INDUCTEES
LARRY J. DUMONT, MBA, PhD

Director
Center for Transfusion Medicine Research

Associate Professor
The Geisel School of Medicine at Dartmouth
Dartmouth-Hitchcock Medical Center
Department of Pathology

“The NBF funding was central to completion of my PhD, and has been a key in transitioning to an academic focus that provides a strong bridge between product development, academic research, education and delivery of clinical care. This has strengthened my contributions to the safe and efficacious care of patients.”

NBF Grant Year: 2002

NBF Research Project Title: “Human Cytomegalovirus (HCMV) Reactivation – Human Exposure Model and Mechanism D.”

Dr. Dumont received an MBA from the University of Phoenix and a PhD in clinical sciences from the University of Colorado Health Sciences Center in Denver. He is Associate Professor of Pathology at the Geisel School of Medicine at Dartmouth and Director of the Center for Transfusion Medicine Research, Dartmouth-Hitchcock Medical Center. Dr. Dumont spent 27 years at Gambro BCT in various technical capacities where he developed and lead the PASSPORT study. He has been actively involved with the Biomedical Excellence for Safer Transfusion Collaborative (BEST) for 23 years, and is the immediate past Chair of BEST. Dr. Dumont has been an invited speaker at meetings of the FDA Blood Product Advisory Committee, the US Department of Health and Human Services Advisory Committee on Blood Safety and Availability, the Paul-Ehrlich-Institute, and various national and international congresses. He is currently an Associate Editor of *Transfusion*. His current interests are in platelet and red blood cell physiology, cryopreservation of platelets, the red blood cell storage lesion, in vivo cell survival kinetics, and clinical outcomes in transfusion medicine.
“My NBF grant permitted me to establish myself in a new country and gave stability to my post-doctoral employment. Those early results led to further funding from other local sources, and to the discovery of a novel erythrocyte protein. NBF grants are an enormously important source of research funding in Transfusion Medicine and Cellular Therapy.”

NBF Grant Year: 2006
NBF Research Project Title: “Characterization of the Vel Blood Group System.”

Dr. Jill Storry is responsible for the Immunohematology laboratories within the Department of Clinical Immunology and Transfusion Medicine, Lund. Dr. Storry is an AABB National Blood Foundation Scholar for her recent discovery of the Vel blood group system. This blood group system is one of many that she is interested in, both at the level of antigen polymorphism but also in the role of polymorphism in pathogen-erythrocyte interaction and these areas form the focus of her continued research.

Awards include the British Blood Transfusion Society Margaret Kenwright and Race & Sanger Awards, as well as the AABB Sally Frank Award. She has authored over 60 original papers, reviews and text books, and given over 100 talks at international and national conferences and courses.

She is member of the Editorial Boards of *Transfusion Medicine Reviews, Transfusion* and *Immunohematology*, and a peer reviewer for these and other scientific journals; the Chair of the International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Red Cell Nomenclature and a member of the International Society for Blood Transfusion Working Party on Rare Donors.
“My NBF award came at a crucial time, early in my career, when it was unclear in what direction my lab would develop. The support was indispensable in allowing me to develop a mature research program, focused on transfusion biology, which has been the basis of my research career.”

NBF GRANT YEAR: 2004
NBF RESEARCH PROJECT TITLE: “Selective Induction of Allotolerance in Bone Marrow Transplantation.”

James Zimring obtained a Bachelor of Science in Chemistry, a PhD in Immunology, and an MD, all from Emory University; he is board certified in Clinical Pathology. Dr. Zimring was an Assistant and then tenured Associate Professor at Emory where he built a basic science program focusing on immunology of transfused red blood cells and platelets. In 2012, Dr. Zimring joined the BloodworksNW Research Institute in Seattle. He currently runs an NIH funded laboratory, is author on over 90 papers, is an active participant in NIH grant review and is on the editorial board of the journals *Transfusion* and *Transfusion Medicine Review*.

Dr. Zimring has received the David B. Pall award (now the Jack Latham Memorial Award for Innovative Research) from AABB, the Jean Julliard award from ISBT, and the Ellis Benson award from Academy of Clinical Laboratory Physicians and Scientists. He received the Herbert Perkins Scientific Lectureship and Award and delivered the Claes F. Högman Lectureship. He is also an elected member of the American Society for Clinical Investigation. Dr. Zimring is a dedicated teacher and in 2011 received the Crystal Apple Award from Emory University for “Excellence in Graduate Education and Instruction.”
Strategic Research and Education Grants Program

This year the NBF launched a new grant program to fund research and education initiatives that support AABB’s overall mission and specific goals. This modest funding program affords the opportunity to enlist NBF’s leadership and supporters in spurring strategic projects forward. By harnessing and leveraging the creativity and new thinking from the brightest minds, our progress will become more robustly supported and will have more meaningful impact.

In January, over thirty potential funding opportunities were identified by the AABB Board of Directors and subsequently ten proposals were presented to the NBF Board of Trustees for approval and funding was released from the NBFRET Board of Trustees. The 2015 projects are progressing according to their work plans and all four projects have engaged strong AABB member leadership and expertise.

“Considerable care was exercised to honor the integrity of the process and the intent of the funding. This novel approach of promoting industry innovation aligns with the NBF’s mission to support education and research by enhancing the competency and professional development of those entrusted to optimize the care and safety of patients and donors.”

Donna M. Regan, MT(ASCP)SBB, SSM Cardinal Glennon Children’s Hospital, AABB President

2015 Funded Projects:

- **EDUCATION:** AABB Center for Cellular Therapies Certificate Program
- **RESEARCH:** AABB Donor Hemovigilance Program – Bridge Funding to Self-Sufficiency
- **RESEARCH:** Key Factors in PBM Organizational Competency and Program Maturation
- **EDUCATION:** Enhancing Education Methods and Content for AABB Members and Customers

2015 Strategic Planning:

In April, 2015 the NBF Board of Trustees committed to a strategic planning effort. Early work included establishing a strong baseline of current and trend data and reaching out to our broad constituency via a Key Opinion Leader survey. The survey sought data on NBF’s impact and performance. These initial efforts also included capture of emerging trends for consideration as the strategic planning efforts unfolded. The NBF Board of Trustees kicked off the strategic planning activity in October with a Strategic Planning Summit. Participants included the NBF Board of Trustees, the AABB Board of Directors’ Executive Committee, CORD and Partners Program members.

As a result of the Strategic Planning Summit, under the leadership of NBF’s Chair, David Perez, three ad hoc work groups were formed to further the strategic planning work. These include:

- **Foundation Management Ad Hoc Work Group** is charged with building an NBF case statement, improving CORD and Partners Program member recognition, strengthening Partners Program member engagement, identifying new CORD and Partner members to approach.

- **Governance Structure and Policies Ad Hoc Work Group** is charged with reviewing the existing NBF Board governance structure and recommending any revisions.

- **Mission Revision Ad Hoc Work Group** is charged with reviewing the existing NBF mission and recommending any revisions.
The work of the NBF is only possible due to the generous donations and leadership from these member organizations.

NBF was founded with support from the **NBF Council on Research and Development (CORD)**. CORD is comprised of companies and blood centers committed to supporting research in the field of transfusion medicine and cellular therapies. NBF thanks its CORD members for their financial support of the NBF Scientific Research Grants Program, as well as their representation and service on the NBF Board of Trustees. CORD members include the following organizations: Abbott Laboratories; American Red Cross; Blood Systems, Inc.; Cerus Corporation, Fresenius Kabi; Grifols; Haemonetics Corporation; ITxM-The Institute for Transfusion Medicine; New York Blood Center; and Terumo BCT.
The **NBF Partners Program** members, established in 2003, also play a critical role in supporting the mission of NBF. Current Partners include Beckman Coulter, Inc.; Blood Bank of Delmarva; Blood Centers of America, Inc.; Blood Centers of the Pacific; BloodCenter of Wisconsin; BloodWorks NW; Bonfils Blood Center; Canadian Blood Services; HemoCue America; Immucor, Inc.; MacoPharma; Mediware Information Systems; and Oklahoma Blood Institute.
NATIONAL BLOOD FOUNDATION
FINANCIALS: FY 2015

NBF raises funds from AABB members, individuals and institutions, as well as from corporations and others. Reporting simply by the numbers, 2015 was unquestionably a successful year. NBF met its overall fundraising goal, raising almost $1.2 million, an exceptional accomplishment. Compared to FY2014, the results are consistent year over year, indicating extremely committed funders, especially during a year that experienced significant change industry-wide. This strong and consistent commitment by our funders positions us to consider new aspirations, new targets and programming.

While it is important to measure fundraising totals in their own right, it is just as important to report impact and value of fundraising activity. The Council on Research and Development (CORD) has created immense value for NBF, AABB and especially the blood research community. In 2015, $750,000 was contributed by CORD members. This funding provides vital annual and long-term funding that is used to fulfill the NBF mission to advance transfusion medicine and cellular therapies by funding scientific research.

In 2015, $450,000 was allocated to support six Early Career Scientific Grant Awards at $75,000 each.

The CORD program helped the Trust’s assets to grow to more than $10.6 million by September 30, 2015. This solidified the original fund target of $10.0 million.

Fundraising Results: FY 2015 vs. FY 2014

<table>
<thead>
<tr>
<th></th>
<th>FY15</th>
<th>FY14</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVENUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributions</td>
<td>$182,194</td>
<td>$192,715</td>
</tr>
<tr>
<td>Grants</td>
<td>$4,800</td>
<td>$3,150</td>
</tr>
<tr>
<td>Event-based</td>
<td>$143,912</td>
<td>$117,061</td>
</tr>
<tr>
<td></td>
<td>$330,906</td>
<td>$312,926</td>
</tr>
<tr>
<td>NBF - RET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributions</td>
<td>$36,725</td>
<td>$87,862</td>
</tr>
<tr>
<td>Contributions – CORD</td>
<td>$750,000</td>
<td>$750,000</td>
</tr>
<tr>
<td></td>
<td>$786,725</td>
<td>$837,862</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$1,117,631</td>
<td>$1,150,788</td>
</tr>
</tbody>
</table>