







### Dana V. Devine<sup>1,2,3</sup>, William P. Sheffield<sup>1,4</sup>, Steven J. Drews<sup>5,6</sup>, Craig Jenkins<sup>1</sup>, Anne-Claude Gingras<sup>7,8</sup>, David Evans<sup>9</sup>, James Lin<sup>9</sup>, Katherine Serrano<sup>1,2,3</sup>, Varsha Bhakta<sup>1</sup>, Bhavisha Rathod<sup>7</sup>, Brianna Greenberg<sup>10</sup>, Andrew Beckett<sup>11</sup>

<sup>1</sup>Centre for Innovation, Canadian Blood Services, Vancouver, Edmonton, Hamilton, and Ottawa, Canada; <sup>4</sup>Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; <sup>4</sup>Department of Pathology and I Molecular Medicine, McMaster University, Hamilton, Canada; <sup>5</sup> Microbiology, Canadian Blood Services, Edmonton, Canada; <sup>5</sup> Microbiology, Canadian Blood Services, Edmonton, Canada; <sup>5</sup> Microbiology, Canadian Blood Services, Edmonton, Canada; <sup>6</sup> Department of Molecular Genetics, University of Toronto, Toronto, Toronto, Canada; <sup>10</sup>Department of Surgery, University of Toronto, Toronto, Canada; <sup>11</sup>Canadian Forces Health Services, Ottawa, Canada

current standards for transfusion.

- disease.
- CCP may prolong shelf-life and storage logistics.
- binding antibody levels remains unknown







SARS-CoV-2 neutralizing capacity of antibodies by plaque reduction neutralization-50 (PRNT<sub>50</sub>) assays.



Functional coagulation factor levels and evidence of Complement activation using enzyme immunoassays.

# Application of Freeze-Dried Plasma Technology to the Preservation of **COVID-19 Convalescent Plasma**

| antibody     |
|--------------|
| SARS-CoV-    |
| id (NP) (A), |
| ding domain  |
| spike (C)    |
| CP pools     |
| or derived   |
| y bars).     |
| dicate mean  |
|              |
| ns for       |
| ed 1:640.    |

### Quality parameters of CCP before and after the lyophilization process

|                                                                | Pooled CCP <sup>a</sup> | <b>CC-TFDP</b> <sup>a</sup> | % Difference | p value <sup>b,c</sup> |  |
|----------------------------------------------------------------|-------------------------|-----------------------------|--------------|------------------------|--|
| Coagulation factors and coagulation-related protein activities |                         |                             |              |                        |  |
| Prothrombin (U/mL)                                             | $1.0 \pm 0.1$           | $0.9 \pm 0.1$               | -10          | NS                     |  |
| Fibrinogen (g/L)                                               | $3.0 \pm 0.2$           | $2.9 \pm 0.3$               | -3.3         | NS                     |  |
| Factor V (U/mL)                                                | $1.09 \pm 0.08$         | $1.0 \pm 0.1$               | -8.3         | NS                     |  |
| Factor VIII (U/mL)                                             | $1.1 \pm 0.3$           | $0.9 \pm 0.3$               | -18          | 0.034                  |  |
| Protein S (U/mL)                                               | $0.81 \pm 0.06$         | $0.74 \pm 0.08$             | -8.6         | NS                     |  |
| Antithrombin (U/mL)                                            | $0.94 \pm 0.03$         | 0.87 ± 0.03                 | -7.4         | 0.0021                 |  |
| Hemostasis screening tests                                     |                         |                             |              |                        |  |
| PT (sec)                                                       | $12.8 \pm 0.4$          | $13.2 \pm 0.4$              | +3.1         | NS                     |  |
| APTT (sec)                                                     | 30 ± 1                  | 32 ± 1                      | +6.6         | 0.0049                 |  |
| Complement factors                                             |                         |                             |              |                        |  |
| C3a (ng/ml)                                                    | 170 ± 20                | 200 ± 30                    | +18          | NS                     |  |
| C5a (ng/ml)                                                    | 7 ± 1                   | 6 ± 2                       | -14          | NS                     |  |

<sup>a</sup>n=3 (mean ± SD), <sup>b</sup>by paired t test, <sup>c</sup>NS; not significant

Coagulation factor activity decreased between 2 and 10% post-lyophilization, except for factor VIII, which decreased by 18%.

Prothrombin (PT) and activated partial thromboplastin times (aPTT) were slightly prolonged postlyophilization (<7%), likely reflecting the small coagulation factor losses. C3a levels slightly increased (NS) post-lyophilization possibly indicating minor complement activation during the process.

Complement or coagulation protein activities were slightly reduced or in keeping with

We only investigated SARS-CoV-2 antibodies, however, freeze-dried plasma technology could potentially be applied to convalescent plasma specific for other illnesses.

Applying freeze-dried plasma technology to COVID-19 Convalescent Plasma allows for maintenance of anti-SARS-CoV-2 antibody levels while simultaneously enabling storage outside of frozen temperatures to facilitate shipment and use both in developing countries and for deployed troops.

## Acknowledgements

Thanks to Karen Colwill, the Burroughs Wellcome Fund, and the COVID-19 convalescent plasma donors.

